
NASA Contractor Report

ICASE Report No. 93-81

191558

¢

IC S 2O
Years of

Excellence

A MULTI-LEVEL SOLUTION ALGORITHM FOR

STEADY-STATE MARKOV CHAINS

Graham Horton

Scott T. Leutenegger

NASA Contract No. NAS 1-19480

November 1993

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23681-0001

Operated by the Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-0001

N
,O
,4" O"

•,t" O 0

,J
uJ

w
..J
I uJ

..J

_O
LL.

,<
=E
I:

Al-
coa-4

_0

I
_Z

ZO
v_

LU
l-

t--

!

00.

r_

lU

W

-g

:>

<

.-4

A Multi-Level Solution Algorithm for Steady-State Markov

Chains

Graham Horton *

Lehrstuhl fiir Rechnerstrukturen, Universit_t Erlangen-Niirnberg

Martensstr. 3, 91058 Erlangen, Federal Republic of Germany

graham@immd3.informatik, uni-erlangen, de

Scott T. Leutenegger t

Institute for Computer Applications in Science and Engineering

Mail Stop 132c, NASA Langley Research Center, Hampton, VA 23681-0001

leut@icase, edu

Abstract

A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady

state Markov chains is presented. The method utilizes a set of recursively coarsened rep-

resentations of the original system to achieve accelerated convergence. It is motivated by

multigrid methods, which are widely used for fast solution of partial differential equations.

Initial results of numerical experiments are reported, showing significant reductions in com-

putation time, often an order of magnitude or more, relative to the Gauss-Seidel and optimal

SOR algorithms for a variety of test problems. The paper also contrasts and compares the

multi-level method with the iterative aggregation-disaggregation algorithm of Takahashi.

*This research was supported by the National Aeronautics and Space Administration under NASA contract
NAS1-19480 while the first author was a visiting scientist at the Institute for Computer Applications in Science

and Engineering, NASA Langley Research Center.
1"This research was supported by the National Aeronautics and Space Administration under NASA contract

NASI-19480 while the second author was in residence at the Institute for Computer Applications in Science and

Engineering, NASA Langley Research Center.

1. Introduction

Markov systems generated by computer modeling tools such as queueing network, Petri nets,

or reliability modeling packages may contain hundreds of thousands of states. The resulting

sparse linear systems of equations have a correspondingly large number of unknowns and must,

in general, be solved numerically using an iterative scheme. Typical methods are the Power,

Gauss-Seidel, and SOR methods. All of these methods have the drawback that they may require

many iterations to reach a solution, particularly if the system is large, or a if high degree of

accuracy is required. This can lead to unacceptably long computation times.

A similar situation is found when solving partial differential equations, where systems of

many hundreds of thousands of unknowns are not uncommon. Here, however, a relatively

new algorithm - the multigrid method - has met with considerable success, achieving, under

appropriate conditions, substantially improved solution speeds compared to traditional methods

such as Gauss-Seidel and SOR. One should more accurately consider multigrid to be a class of

methods, as the basic framework allows a wide variety of choices for each of the constituent

components. The method to be presented in this paper is in many respects related to this

class of algorithms: the Markov system is recursively coarsened and values obtained from these

smaller systems are used to achieve faster convergence.

In this paper we present a new solution algorithm, the Multi-Level algorithm, for Markov

chains. Our initial experiments indicate the multi-level algorithm does not require the Markov

chain to have any special structure in order to achieve excellent performance, although if such

structure does exist it may be possible to exploit that structure to achieve even better perfor-

mance. We can offer no proof of convergence, but in all experiments we have run the method

always converges. The convergence theory for multigrid methods is relatively limited, applying

largely to equations of elliptic type. However the methods are widely used on all classes of linear

and non-linear PDEs. We present experimental results for the Gauss-Seidel, SOR, and Multi-

Level algorithms when applied to Markov chains generated from birth-death processes, finite

population tandem queueing networks, blocking (finite capacity) tandem queueing networks,

and a canonical stochastic Petri-net model.

For purposes of brevity we will refer to the Gauss-Seidel algorithm as the GS algorithm, and

the Multi-Level algorithm as the ML algorithm. Note that the phrase "multi-level algorithm" is

also used to denote a class of methods related to multigrid. These bear a structural resemblance

to the schemepresentedhere in that they make use of coarser subproblems to achieve acceler-

ated solution; they are, however, otherwise unrelated. The remainder of the paper is structured

as follows. In the following section, after some preliminary remarks, the multi-level method is

described. In section 3 we describe related work and compare and contrast the multi-level algo-

rithm with existing algorithms. In section 4 results of experiments comparing the performance

of the method to GS, SOR, and the algorithms of Takahashi for a variety of test problems are

presented. In section 5 we discuss the practical aspects of implementation of the multi-level

method and provide a list of possible directions for future research. In the final section we

summarize the paper.

2. Multi-Level Solution Al$orithm

In this section we explain our new ML solution algorithm. We first summarize classical multi-

grid techniques in section 2.1. We then review classical Markov chain aggregation techniques in

section 2.2. In section 2.3 we give a detailed description of our ML algorithm.

2.1 Multisrid Methods

Multigrid algorithms are a relatively recent development in the field of iterative solvers for

large systems of equations, dating from the late seventies [1]. They were originally applied to the

systems of equations that arise from the discretization of elliptic boundary value problems, and it

is for these equations that most multigrid theory has been developed. For this class of problems

multigrid algorithms are among the fastest known solvers, being of optimal complexity, i.e.

having computation times that are linear in the size of the input. An introduction to multigrid

algorithms may be found in [2], [7] and [17].

Multigrid algorithms begin by defining a set of increasingly coarse representations (grid levels)

of the original problem, each of which has only a fraction of the number of degrees of freedom

as its predecessor. The algorithm uses a standard iterative procedure such as GS at each grid

level to quickly reduce error components that are high frequency w.r.t, that level (smoothing).

A smoothing sweep through all grid levels efficiently reduces errors across the entire spectrum.

In addition to the smoother, operators are required that transfer information from a fine to a

neighboring coarse level (restriction) and vice versa (prolongation).

Multigrid algorithms work most efficiently on regularly structured elliptic problems, whose

coefficientsvary smoothlybetweenneighboringunknowns.In suchcasesthey canachievean

error reductionof an order of magnitudeper iteration. Conversely,multigrid algorithmsfor

problemsthat arenon-elliptic,unstructuredor haverapidlyvaryingcoefficientsdonot in general

performaswell and currentlyrepresentan activefield of research.Markovchainscanpossess

oneor moreof the abovecharacteristics.Onebranchof multigrid researchwhichattemptsto

dealwith generalsparsesystemsis knownasalgebraic multigrid, see [11].

Given an appropriate choice of smoother, multigrid algorithms can be parallelized with a

high degree of efficiency, see [8] for a recent survey. This is, of course, an added advantage in

the context of modern supercomputer architectures and networked workstations.

The algorithm to be presented in section 2.3 may be viewed as a multigrid-like algorithm.

However, owing to the absence of a grid structure and because of the difference in approach

to multigrid schemes, we will refer to the algorithm more abstractly as a multi-level algorithm.

Because of the similarities between the algorithms, we nevertheless expect that many of the

established multigrid ideas can be applied to the Markov chain solver, and this indeed proves to

be the case.

2.2 Aggregation of Markov Chains

Consider a steady state continuous time Markov chain consisting of n states sl .. •s,,. Denote

the vector of unknowns by p, where pi is the probability of being in state si.

We then have to solve the system of equations

Pp=O (1)

with the additional condition

_p4 = 1 (2)
i--1

Note, equation (1) is simply a reformulation of the classic continuous time Markov chain

equation:

_rQ = 0 (3)

where P is the transpose of the generator matrix Q, and p is the transpose of steady state

probability vector _. Equations (1) and (2) form a sparse linear system which is typically solved

3

I"'" _"'-. "'_ _"'., ._ "-. °°°"................... -_

i" "%

•, Q

/\ ,

Figure 1: Aggregation of Markov Chains

numerically using the GS 6r SOR algorithm. These schemes suffer the drawback of needing a

large number of iterations when n is large or when a high degree of accuracy is required.

A coarser representation of the Markov chain described by P may be obtained by aggregation.

This means creating a new Markov chain Q with the vector of state probabilities q, each of whose

N states $1 ... SN is derived from a small number of states of P. Figure 1 illustrates the situation

for an eight-state birth/death chain (P), where states are aggregated in pairs to form a four-

state coarser level system (Q), which in turn is pairwise aggregated to form the coarsest level

two-state system (R).

In the following we will use the terms fine level and coarse level to refer to Markov chains

where the latter is obtained by aggregation from the former. The relation Sk E S_ signifies that

the fine level state sk is mapped by the aggregation operation to the coarse level state Si.

The matrix Q of the aggregated system may be chosen as follows :

This is the classical aggregation equation. Note that the matrix Q is a function not only of the

fine level matrix P, but also of the fine leyel solution vector p.

This yields the aggregated equation in the unknown q:

Qq=O , (5)

4

with the additional condition

Itcan then be shown that

N

qi= 1 (6)
i=I

q,= ,k , (7)
skE$i

i.e.the solutionq ofthe aggregated system trulyrepresentsa coarserversionof the solutionp

of the originalproblem. The probabilityof being in stateqiisthe sum of the probabilitiesof

being in any ofitsconstituentfine-levelstates.

A furtherrelationbetween the solutionsof coarseand finesystems isgiven by the disaggre-

gation equation:

i=N _ PIPlk

o (8)
i=1 slESi

This equation reduces to (1) when (7) is applied.

One may proceed recursively to obtain yet further coarsenings, arriving eventually at some

coarsest system which may consist of only two states.

The idea behind the ML algorithm is to use approximations obtained on coarser systems to

improve the current approximation to the fine solution. We therefore use the coarser representa-

tion to obtain a correction to p. One iteration of the ML algorithm will proceed in the multigrid

manner from the original, finest system down to the coarsest, setting up coarse level equations

and performing GS smoothing, and then back up to the finest level, computing and applying

corrections. Note, however, that other orderings of processing the various levels are possible.

2.3 Description of the Algorithm

We adopt the following abbreviations for vectors a, b, c E _m:

a=b.c =_ ai=bi*ci, l<i<m

a = b/c =- ai = bi/ci, 1 < i < m

We enter the (n + 1)th iteration of the ML algorithm with the current approximation to the

solution pod obtained as a result of the (n)th iteration, whereby p(0) denotes the initial guess,

andbeginby performingoneor moresweepsof the GSalgorithm,obtainingthe vector1_:

= GS(P(n)) (9)

We assume throughout that application of GS includes a subsequent normalisation step to

enforce (2). The vector fi win not, in general be the solution p of (1), but we may write

P = P , (10)

where p* is the elementwise multiplicative correction necessary to _. Knowledge of p* would

immediately enable us to compute the solution p. We may write (1) as

P(_*p*) = 0 (11)

Since _ has been smoothed by application of the GS algorithm, we assume that it no longer

contains any high frequency error components, and thus that p* is smooth. Therefore we may

compute an approximation to p* on a coarsened system, since the dimension of the latter is

smaller, and thus the computation will be cheaper. We write a coarsened version of (11) as

Q,((l * q') = O , (12)

where Q is the matrix of the aggregated system and q* and q represent aggregated representations

of p* and 15,respectively.

The coarse system matrix 0 is chosen to be an approximation to the the matrix Q from (4),

replacing p by 15,since p is not available until the algorithm has converged:

_j _ akE& al
Pk (13)

skES_

In the case of a converged solution, we will, however, have/_ = p and therefore the correct

coarse matrix Q = Q.

In order to obtain _ in (12) we require an operator that maps a fine level vector to the

coarser, aggregated vector. This operator will be denoted by R (from the multigrid restriction

operation), and we write

¢ = (14)

We choose summation for R, in accordance with (7):

skESi

This choice for R has the property

(15)

q = R(p) ,

i.e. the exact fine level solution is mapped by R to the exact coarse level solution. It is clear

that this property is necessary, since at convergence, both (1) and (5) must be satisfied.

We proceed by defining

= _, q* , (16)

thus obtaining the coarse level equations to be solved:

N

0_=0, _-'_i= 1 (17)
i=1

Solving (17) for _ will therefore enable us to compute q*, the coarse approximation to the

correction via (16): q* = _/_.

We compute the fine-level correction from its coarse approximation using the operator I

(interpolation):

p*=I(q*) (18)

P*k=q* Sk e Si (19)

We choose the following operation for I:

p*= I(q*) =

We then compute the new iterate p(n+l) using

(20)p(n+l) = 15 = C(p,p*) - p * p*

If the algorithm converges, we hope that p(,,+O will be a better approximation to p than p('O.

In general we have p(n+l) # p, since the correction p* was computed only approximately on a

coarse grid, using an incorrect matrix Q # Q.

7

By analogywith the SORscheme,whichcomputes an over-corrected iterate compared to the

underlying GS algorithm, we may consider using an overcorrection for the ML scheme:

p*=I(q*) = P*k=q_(w+(1-w)q.) skESi , (21)

where we set 0 _< w < 1. For w < 1 such an operation will overdo the correction, since values

q* < 1 will be decreased and values of q* > 1 will be enlarged. The parameter w thus plays an

analogous role to that of the over-relaxation parameter in the SOR scheme, it is to be hoped

that, as is the case for the SOR scheme, certain choices of w may lead to improved solution

efficiency. We will consider the utility of over-correction in section 4.2.

The relationship between the correction and the disaggregation equation can be seen by

comparing the r.h.s, of (8) after application of (14):

i=N

i----1 stES_

and after the correction (20):

i=N

i=1 s_ES,

i=N

i=1 stfiSi

After the iteration has converged, we have

q* 1N I'_

where 1 denotes the vector (1, l, ..., l) T, i.e. no further correction takes place. We then also

have Q = Q and therefore _ = q.

Note that the question of assigning fine nodes to their coarse counterparts is still open. This

we will call the coarsening strategy or aggregation strategy. The aggregation strategy can have

a significant effect on the performance of the ML algorithm. In cases where we have some

knowledge of the structure of the Markov chain, for example when queueing networks are to be

modelled, then we may utilize this information in the construction of the aggregated system. In

8

other cases, mapping strongly coupled fine states to the same aggregated state seems to be an

efficient strategy.

Note that the successive application of (18) followed by (14) fulfills

R(I(q)) = cq c • _, V q • _N -, (22)

i.e. a coarse vector q is invariant up to a constant factor under the operation of prolongation

followed by restriction. An analogous relationship between the prolongation and restriction

operators in a classical multigrid algorithm is frequently required. Furthermore the composite

coarse grid correction operator C(_, I(q*)) preserves the relative probabilities of all fine level

states mapped to the same coarse level state by aggregation:

p = C(_, I(q*)) =_ Pk_...._._= Pk_...2._
Pk2 Pk2 sk_,sk2 • Si, l < i < N

The two-level version of the ML iteration is given by the sequence of steps (9), (14), (17), (18),

(20). The multi-level algorithm is obtained by recursive application of the two-level algorithm to

obtain a solution to the aggregated equation (17) and is described in algorithmic form in Figure

2. We use the subscript l to denote level of representation (l = lmax finest level, l = 0 coarsest

level). The coarse level l - 1 and fine level l between which the operators [and R map are

identified by appropriate indices. Note that, because of the recursive nature of the algorithm,

the unknowns q*, t] and c_are represented by the variables P_-I,/_1-1 and PI-1, respectively.

The Multi-Level algorithm is non-linear, owing to the use of the coarsened system obtained

via (13), although the original problem (1) is linear. It seems therefore unlikely that theoretical

results can be obtained for estimates of the convergence speed of the algorithm for general

problems.

We allow in general the possibility of applying GS 1/times at each level with t, > 1, denoted

by GS_. We also consider the possibility of a more complex cycle form (in particular F- and

W-cycles, see the multigrid literature), obtained by multiple recursive calls to procedure ross.

3. Related Work

Currently most performance tools requiring the solution of Markov chains use either the

power, GS, or SOR algorithms. In a paper by Stewart and Goyal [15] the various techniques are

9

procedure mss(1)

if (1 = o)

solve /_#t = 0

else

;_ = GS_(;_)

#1-1 "
mns(l- 1)

PT--1 " ffl--l/Pl--1

P7 = II-I,I(PI*-I)

reCurn

Figure 2: Multi-Level Algorithm

compared and SOR with dynamic tuning of the relaxation parameter emerges as the method

of choice. Initial resuits of the ML algorithm show that it generally outperforms optimal SOR,

often by on order of magnitude or more, without any parameters to tune.

Our work is related to a large body of work on aggregation-disaggregation techniques. Most

previous work using aggregation makes the assumption that the number of aggregate states, N,

is much less than the number of states, n, i.e. N << n. In our algorithm we generally assume

N - n
--7"

In addition, much of the related work assumes that the Markov chains being solved are

generalized birth-death processes [16, 14], or that the Marker chains are nearly completely

decomposable systems [5, 6] In the latter case the solution is usually an approximation often

accompanied by bounds on the error. We refer the reader to [12] for descriptions of these special

Markov chain structures and for a more comprehensive list of references. Our work differs in

that it does not require any special structure in the Markov chain, and the result is exact, not

an approximation.

The work that most strongly resemble ours is the algorithm of Takahashi [16] and its variants

[12]. We subsequently use the terminology derived in the previous section. The Takahashi

algorithm starts with an initial iterate for the fine level chain. The fine level chain of n states is

then aggregated into a coarse Markov chain of N states, where N << n using equation (13). The

coarse chain is then solved (equation (17)), and the correction obtained from the coarse chain

10

is applied to the previous iterate in the fine level. A new iterate at the fine level is obtained

as follows. The fine level states are grouped together into N sets of states where the members

of each set correspond to each aggregate state in the coarse level. The set of linear equations

corresponding to each of these sets of states is solved independently of the other fine level states

by treating the values for the other states as constants. The new iterate at the fine level is the

result of solving the equations for each set of states. The algorithm iterates between the two

levels until sufficient accuracy is obtained.

We may view the Takahashi algorithm as a special case of ML, obtained by the following

choices, compared to the ML scheme we prefer:

1. Use of only two levels of representation of the system, rather than multiply coarsened

problems.

'_ for a small c (typically 2 or 4).2. N _ n, as opposed to N =

3. Block Gauss-Seidel or Block Jacobi as a smoothing procedure on the finer level, as opposed

to a small number of steps of a pointwise Gauss-Seidel scheme.

4. Use of post- rather than pre-smoothing, i.e. processing the fine-level after, rather than

before the coarse-level solve.

It is our claim that 1, 2 and 3 above are not the best choices. Point 4 proves to have little

effect, as is also the case for classical multigrid methods, and is in fact irrelevant in the context

of performing many iterations in succession. It is therefore more a conceptual difference. In

section 4.3 an experimental result disproves point 2 above. In point 3, we observe that solving

entire subsystems of size n/N can be prohibitively expensive and contend that solutions can

be more efficiently obtained by pointwise GS applied on a larger set of more slowly coarsened

problems.

We restate that our motivation for the ML algorithm was not to modify current aggregation-

disaggregation algorithms, but rather to devise a algorithm similar to multi-grid algorithms

which have shown exceptional merit in solving elliptic boundary value problems. We find it

helpful to not view our algorithm as a Markov chain aggregation-disaggregation variant, but

instead view it as a multigrid-like scheme.

11

4. Experimental Results

In this section we present experimental results to show how our new algorithm compares

with GS and SOR. All experiments presented assume continuous time Markov chains. We

have also solved discrete time Markov chains with similar improvements in performance relative

to SOR and GS. In section 4.1 we first compare ML to GS and SOR for a variety of test

problems assuming an unsophisticated implementation of the ML algorithm. In section 4.2

we demonstrate the potential of improving ML performance via a few techniques including

intelligent aggregation, varying the number of smoothing steps at each level, over-correction,

and F and W cycles. In section 4.3 we present experimental results comparing ML to both the

Takahashi and nested Takahashi algorithms [16].

4.1 Generic Multi-Level Results

In this section we present our generic ML results. By generic we mean that the ML algorithm

used is the simplest one possible, a V cycle (each iteration goes from the finest level down to

the coarsest level and back up to the finest level), no overcorrection, only applying one iteration

of the smoother (GS) at each level, and a simple aggregation strategy. In particular, we assume

states of the Markov chain are ordered 0... n - 1, and that the aggregation policy is by pairing

states by index: s, E S I ¢_I = [_J. If a level has an odd number of states thenneighboring

the last state is included in the last coarse level state. Unlike SOR, this ML algorithm has no

parameters to tune. In all of our experiments we give the benefit of the doubt to SOR and assume

1 fh
we can find the optimal relaxation parameter w. We find w to the nearest _ by using a

binary search between 1.0 and 2.0. This results in over-optimistic metrics for the SOR algorithm

since in practice w must be found via dynamic tuning, thus resulting in additional iterations. By

presenting best case results for SOR and worst case results for ML, we strengthen our argument

that ML may be a more promising solution algorithm than SOR. In all experiments we assume

the initial iterate is set to the vector (1 I T_, ..., _) . We also assume the ML algorithm recursively

coarsens the set of equations until the final coarse sytem has only two states.

Possible metrics for comparing the algorithms are the number of iterations, the process time,

the number of floating point operations (flops), and the geometric mean of the convergence rate.

The number of flops Was computed by inserting a counter into all three programs. The process

12

time is obtainedfrom the unix systemcall times 0 and is the CPU time used while executing

instructions in the user space of the programs. In all cases we have found the process time to

be a more conservative measure than flops, i.e. the comparison of ML to GS and SOR is less

favorable when using process times than when using flops. Hence to strengthen our arguments

of the utility of the ML algorithm we chose process time as our primary metric. Note that the

process time also includes time for generation of the ML structure, whereas the flops metric

would miss this factor. In addition, the flops metric does not capture the additional pointer

operations needed by the ML algorithm for accessing elements in the coarse levels. To enable

quicker comparison of the algorithms we also plot the ratio of process time for SOR and GS

relative to the process time for ML. We also consider the number of iterations necessary for

convergence. In general, the ML algorithm requires far fewer iterations than the other two

algorithms, but consumes more time per iteration since each iteration requires one application

of the smoother at each level and the construction of the coarse level matrices Q.

We first consider a birth-death Markov chain with a finite number of states. We vary the the

number of states assuming a birth rate of 1 and a death rate of 2. The results are presented

in figure 3. The number of iterations increases linearly with the number of states for the GS

and SOR algorithms, whereas the number of iterations remains fixed at 21 iterations for the ML

algorithm. Intuitively, probability mass only moves slowly through the system in the GS and

SOR algorithms, whereas one iteration of the ML algorithm can move mass from one end of the

chain to the other via the coarse level problems.

The number of flops and the process time of SOR and GS increase quadratically for SOR and

GS with the number of states, whereas both metrics increase only linearly for ML. Thus ML

is an optimal method for this particular problem. The GS (SOR) algorithm requires 257 (128)

times more processing time than ML for a birth-death chain of 10,000 states. The ratios increase

with system size. Even for small birth death chains, such as 1,000 states, the ML algorithm is

more than an order of magnitude faster than GS and SOR.

One possible reason that the GS and SOR algorithms require more time as the number of

states is increased is that they must move probability mass a longer distance in the solution

vector. To determine whether it is this distance or the overall number of states we conduct the

following experiment. We assume a birth death chain with each state having two additional

exiting transitions beyond the birth and death. State si has a transition to state Si+m and a

13

transition to statesi-,n. If (i + m) > n - 1 then the transition is to state n - 1. Similarly, if

(i - m) < 0 then the transition is to state so. We initially set the number of states equal to 500

and m equal to 2. We then successively double the number of states and the distance m. We

define the diameter of a Markov chain to be the maximum distance (or number of transitions)

between any two states. Hence, in this experiment, regardless of the number of states, the

diameter is fixed at 250. We assume all transitions in the birth direction proceed at rate 1, and

all transitions in the death direction are at rate 2.

The results from this experiment are presented in figure 4. The number of iterations necessary

for SOR and GS initially rises with an increase in the number of states, but then levels off.

Conversely, the process time steadily increases, hence more work is done per iteration as the size

increases. It appears that both the size and diameter of the Markov chain influence convergence

speed of GS and SOR. The number of iterations for the ML algorithm varies from 19 to 25. Thus

the diameter of the chain does not appear to have much effect on the solution speed (measured

in _terations) of the ML algorithm.

We next investigate the sensitivity of the relative performance of the algorithms to the ratio

of birth rate to death rate. We fix the birth rate at 1 and vary the death rate from 0.00i to

1000. The number of states is equal to 10,000. The results are presented in figure 5. Note that

both axes are scaled logarithmically.

The performance of the GS algorithm is always worse than that of the ML algorithm. The

SOR algorithm performs better than ML when the death rate is less than the birth rate, but

one to two orders of magnitude worse when the roles are reversed. In the best case observed

(for SOR), SOR requires ¼ of the process time of ML. Note that the computation times for GS

and SOR could be made symmetric by exchanging the birth and death rates or by reordering

the states. The ML algorithm does not require any such special techniques to achieve good

performance, and hence is more resilient to changes in transition rates.

The excellent performance of SOR when the death rate is less than the birth rate is surprising.

In fact, it is not realistic. For a ratio of _ or less SOR converges in less than 30 iterations. We

were able to achieve this excellent performance by first determining the optimal w to the nearest

_th by applying SOR many times with w values chosen in a binary search. In practical
lO00

situations the optimal value of w is not known a priori and the solution will be calculated only

14

once. Hencew must be obtained via some dynamic procedure. It is impractical to assume

that an SOR algorithm including dynamic tuning of w can converge in only 30 iterations. In

fact, in a recent paper proposing a dynamic method for determining w, [3] , 30 iterations are

executed before tuning of w even begins. The paper notes that often thousands of iterations

were necessary to find the optimal w. Thus, the excellent performance of SOR in figure 5 could

never be achieved in practice. We conjecture that ML will perform better than any existing

dynamic tuning SOR algorithm for the entire parameter range in this experiment.

We next explore Markov chains generated from simple queueing models. We first assume a

closed system tandem queue model. The queueing system is shown in figure 9. We assume a

finite population where jobs think for an exponential period of time with rate), (i.e. the jobs

visit an infinite server and are served at rate _). Jobs are served in queues 1 and 2 at rates

#1 and _2 respectively, and upon leaving queue 2 return to queue 1 with probability p. The

states of the Markov chain are generated from an initial state of all jobs in the think state,

and then by constructing the chain in a breadth-first fashion. States are numbered 0 through

n- 1 as they are created in the breadth first search. The aggregation policy used in the ML

algorithm is to pair adjacent-numbered states. Hence, the performance of the ML algorithm is

almost certainly sub-optimal, since no intelligent aggregation techniques are being used. In all

experiments reported we fix the think rate to 1.0.

In the first experiment we set p, the probability that a job leaving queue 2 returns to queue

l, to 0.0, #1 to 1.0, and #2 to 2.0 and vary the population from 25 to 250. This results in a

range of 351 to 31,626 states in the underlying Markov chain. The results of the experiment are

plotted in figure 6. The ML algorithm requires far less computation time for the solution than

the other algorithms, especially as the population increases.

We next consider the effect of the relative values of #1 and _2 on the performance of the

algorithms. We fix the think rate to 1.0, probability p to 0.0, the population to 100 (resulting

in 5151 states in the underlying Markov chain), set #1 to 1.0, and vary _2 from 0.001 to 1000.

The results are plotted in figure 7. The ML policy results in lower computation times than the

other algorithms across the entire parameter space, and when _1 > P2 the solution time is an

order of magnitude faster. Experiments with larger populations demonstrate a more pronounced

difference in the performance of ML relative to GS and SOR.

15

Wefinally considertheeffectof probability p, i. e. the probability that a job leaving queue 2

is returned to queue 1. We set the think rate to 1.0, the population to 150 (11,476 states), and

vary p for three different settings of #1 and #2. The performance of ML is much less sensitive

to the ratio of the rates and to p than GS or SOR. When #I =/_2 = 1.0, GS ranges from 6 to

12 times slower than ML, and SOR ranges from 2 to 6 times slower than ML. When #1 = 1.0

and #2 = 2.0, GS ranges from 6 to 12 times slower than ML, and SOR ranges from l0 times

slower to 1.5 times faster than ML. When #1 = 2.0 and #2 = 1.0, GS ranges from 5.3 to 2.2

times slower than ML, and SOR ranges from 2.7 times slower to 1.5 times faster than ML.

We now consider the application of the three algorithms to the solution of the underlying

Markov chain of a canonickl stochastic Petri net. Figure 11 shows the complexities, measured

in KFLOPs, of the GS, SOR and ML algorithms applied to the underlying Markov chain of the

stochastic Petri net of Molloy [9], depicted in Figure 10, with populations ranging from 10 to

60. The Markov chains for this problem were generated using the SPNP (stochastic Petvi net

package) tool of Ciardo et al [4]. ML is superior to GS for all cases tested, the improvement

being a factor of approximately 3.3 for the smallest and approximately 16.6 for the largest case

considered. Against SOR with an optimally chosen overrelaxation parameter, ML performs

slightly worse only for the smallest problem considered.

4.2 Multi-Level Acceleration Techniques

In this section we consider a few techniques that can be applied to the ML algorithm to

further accelerate convergence speed. Some of these techniques (F and W cycles, application of

the smoother multiple times at each level) are borrowed from the multigrid literature. There are

other multigrid techniques that may prove to be useful to our ML algorithm. The over-correction

idea is directly analogous to over-relaxation in SOR.

We first consider how more intelligent aggregation of the Markov chain can affect the per-

forlnance of the ML algorithm. We consider the same tandem queueing network in section 4.1,

figure 9, except that we assume finite capacity (blocking) queues with a capacity of c and set

p = 0. We assume the queues are finite Capacity to facilitate the ease of an intelligent aggre-

gation technique. Figure 12 shows on the left the Markov chain generated by this modified

tandem queue. The states of the Markov chain may be written as a two-dimensional lattice of

size (c + 1) × (c + 1). The transitions then form a regular pattern, somewhat analogous to the

16

grid of a discretizedPDE.Weassumethe statesto benumberedlexicographicallyfrom topleft

to bottomright andfor simplicitythat c + 1 be a power of two. The simple aggregation strategy

used would successively pair states that are adjacent horizontally until no longer possible and

then pairwise vertically, as illustrated on the upper right. An alternative strategy more appro-

priate to the structure of the problem is shown on the lower right, where fine level states are

grouped into 2 × 2 units.

Table 1 shows the number of floating point operations needed by the ML algorithm applied to

the Markov chain of Figure 12. We compare the one-dimensional, pairwise aggregation strategy

(I-D) with the two-dimensional case (2-D). We consider from one to three smoothing steps with

GS (u = l, 2, 3). For comparison, GS requires 30.1 MFLOPs and SOR with an optimal choice

for _ requires 14.1 MFLOPs.

1-D 2-D

v 1 2 3 1 2 3

MFLOPs 12.7 9.3 8.2 5.4 5.2 4.9

Table 1: Effect of u and aggregation strategy on the ML algorithm.

It can be clearly seen that the two-dimensional aggregation strategy is significantly faster

than the simpler scheme. The former can be also be improved (by about 33%) by performing

additional relaxation steps, whereas the latter algorithm, which is already superior, improves to

a lesser extent. In this experiment the best-case ML scheme achieves a speedup of 6.1 over GS

and 2.9 over SOR.

w I 1.0 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0.0MFLOPs I 5.38 5.21 4.67 4.14 3.78 3.60 3.25 3.25 3.07 2.89 3.07

Table 2: Effect of overcorrection on operation count.

Table 2 shows the effect of the "overcorrection" according to (21) on the operation count

of the ML scheme applied to the same problem, where w ranges from 1.0 to 0.0. A significant

improvement is found to be achievable, the optimal value of w giving rise to an improvement of

17

approximately53%over the unmodified correction. The ML scheme with the optimal overcor-

rection and adapted aggregation strategy thus requires less than 1/10 (1/5) of the floating point

operations of the GS (SOR) algorithm.

Figure 13 shows the operation counts of the Multi-Level algorithm applied to the simple

birth-death chain of length 512 with birth and death rates of 100 and 101 respectively. We

consider the V-, F- and W-cycle types with varying degrees of overcorrection. For values of

w = 1, i.e. without overcorrection, it can be seen that both W and F cycles are superior, despite

their higher per iteration cost. All cycle types show improvements with overcorrection, the V

cycle being most sensitive, exhibiting divergence when w is chosen to be too small. This behavior

is, of course, well known with the SOR algorithm where a slightly overestimated value of w can

lead to fast divergence. The V cycle is improved by a factor of 16.8, the F cycle by 6.7 and

the W cycle by a factor of 5.87. All ML variants are approximately equally efficient when their

optimal w is chosen.

Figure 14 shows comparable results for SOR applied to the same problem. Here, however, a

logarithmic scale is used. We include the F cycle result of figure 13 for comparison purposes.

From the figure the sensitivity of SOR to the choice of w is clearly demonstrated: the range for

which fast convergence is achieved is extremely narrow. By comparison, the F cycle is much

more robust, i.e. it is more tolerant of inaccurate values of w. The unmodified ML algorithm

is 186 times faster than unmodified SOR (i.e. GS), and the optimal ML algorithm is still 8.7

times faster than the optimal SOR..

4.3 Comparison with Takahashi's Algorithm

In this section we present results from initial comparisons with the iterative aggregation-dis-

aggregation algorithms of Takahashi [16] as specified in the survey paper by Schweitzer [13].

As outlined in section 3, the Takahashi algorithm aggregates the fine level chain of n states

into a coarse Markov chain of N states. We define the aggregation factor to be the number

of fine level states aggregated into each coarse state. We consider a birth-death chain of 4096

states with a birth rate of 2.0 and a death rate of 1.0. We solve the chain using the Takahashi

algorithm with aggregation factors of 2, 4, 8, and 16. We could not get the algorithm to

converge for larger aggregation factors. The ratio of the Takahashi solution time over the ML

solution time is plotted in figure 15. The computation time for ML is constant since we fix the

18

aggregationfactor at 2 for the ML algorithm. In anotherexperiment,results not shown, we

have observed that larger aggregation factors increase the solution time for the ML algorithm.

The performance of the Takahashi algorithm is extremely sensitive to the aggregation factor,

the computation times varying by more than an order of magnitude, whereas the ML algorithm

requires no tuning of any parameters. Interestingly, Takahashi's algorithm performs best at

a modest ratio of n = 8N, as opposed to the case N << n, as the algorithm was originally

intended. In the best case, the Takahashi algorithm requires a factor of 1.8 more computation

time. Results with the birth-death rates reversed are similar.

We also attempted to test the nested Takahashi algorithm, i.e. the coarse chain is solved

recursively using the Takahashi algorithm, but only succeeded in getting the algorithm to con-

verge for a few experiments. The problem with convergence has been previously noted [13]. For

those few experiments that convergence was achieved, the ML had a smaller computation time.

Hence, it appears that the Takahashi algorithm could be used to achieve solution times ap-

proaching that of the ML algorithm, but suffers the drawbacks of requiring fine tuning of the

aggregation factor, and also convergence problems. The Takahashi algorithm was originally

proposed to reduce the memory requirements for solving Markov chains, whereas the ML algo-

rithm actually uses more memory than standard solution techniques, hence it may not be fair

to compare the two without taking memory requirements into consideration.

5. Discussion of the algorithm and the results

Memory requirements. The implementation of the ML algorithm requires one additional

variable at each state compared to the SOR scheme in order to store the temporary values _. In

addition, the overall number of states needed is higher than for SOR because of the additional

recursively aggregated systems. If the number of states of the original problem is n and this

number is reduced by a factor of f during each aggregation step, then the overall number of

states s needed by the ML algorithm is bounded by

n

1-/

Thus in the examples considered in section 4 we have f = 1/2 and therefore s < 2n. Smaller

values of f lead to smaller memory requirements, and indeed we have observed improvements

in efficiency with f = 1/4 and f = 1/8, giving 8 < 4n/3 and s < 8n/7, respectively.

19

Implementation effort. The ML algorithm is evidently more complex than the SOR

scheme, additional coding being required for the the treatment of the coarse grid equations.

The implementations used in section 4 required however, only 329 and 576 lines of C for the

SOR and the ML algorithms respectively. Thus we consider implementation overhead not to be

significant.

Parallelizatlon. The Multi-Level algorithm will parallelize well, given an appropriate choice

of smoother. Evidently, there are serious difficulties involved with the parallel execution of the

GS and SOR algorithms, owing to the recursive nature of these schemes. However, in the

context of multigrid algorithms, it has been shown that the "multi-color" style of GS can allow

efficient parallelization without compromising convergence speed [8]. Parallelization of ML is

done by data partitioning within each level. With a multi-color smoother, all the operations of

the ML method at a given level can be performed concurrently. Communication will be required

between processors for the smoothing step and collect/broadcast operations for the convergence

test and enforcement of (2). Although coarser levels will run less efficiently, as less computation

is performed there, the coarse granularity of the finer levels, where most computational work is

located, will ensure overall good parallel performance. Thus we conclude that the ML algorithm,

too, will perform well on a multiprocessor system or workstation cluster. We are at present

developing a parallel version of the algorithm, and hope to report on the results in the near

future.

Cycle types. There are other alternatives to processing the levels of aggregation in the

downward-upward sweep used in the present scheme. These can be obtained by making the

number of recursive calls to procedure ross in Figure 2 a function of the level number I. Thus

coarser levels may be visited more than once during one iteration. Such techniques can, in the

classical multigrid context, lead to improved efficiencies, as the coarse level equations are then

more accurately solved. Experiments reported in the previous section have shown that this can

also be the case for the ML algorithm presented here. One may furthermore consider dynamic

cycling after Brandt [1] or adaptive cycling according to Riide [10].

Choice of aggregate equation. The,algebraic multigrid algorithm often defines the matrix

of the aggregated level as a function of the finer level matrix and the prolongation and restriction

20

operators represented in matrix form:

Q = RPI

In the present context this would have the advantage of not having to recompute the matrix Q

at every iteration. However, property (7) would be lost.

Choice of coarsening strategy. Convergence characteristics may be improved by a ju-

dicious choice of aggregation strategy. In particular, Markov chains derived from queueing

networks can possess a regular structure which may be exploited. Experiments have shown this

to be the case for the tandem queue example of section 3. More work is needed to create a

Multi-Level algorithm which automatically finds good aggregation strategies.

Additive correction. Multigrid algorithms use the coarser grids to compute an additive

correction, rather than a multiplicative one. Our attempts to develop such a algorithm were only

partially successful in that occasionally, negative correction values from the coarse grid induced

negative values in the solution at the finer level, leading to a divergent iteration. Similar results

were observed when, by analogy with multigrid schemes, a defect was used to generate an

inhomogeneous aggregated equation. Further work is needed to determine whether a multigrid-

like algorithm can be found for the Markov problem.

6. Conclusions and Outlook

The ML algorithm presented in this paper has been shown to require significantly less com-

putation time than the SOR scheme for a number of test problems. The difference between the

two algorithms increases with the number of states of the Markov chain. In addition to being

significantly faster, based on our experience to date it appears that the ML algorithm is much

more resilient to variations in transition rates. Another nice property of the ML algorithm is

that excellent performance can be obtained without the necessity of tuning a parameter, such

as the over-relaxation parameter in SOR. We have shown that ML performance can be even

further improved, up to a factor of 6 times faster in our initial experiments, by using F and W

cycles or over-correction.

Examination of a larger sample of cases, including Markov chains from real applications have

yet to be made. However, we feel that the algorithm shows enough promise to justify further

investigation into ML schemes for solving Markov chains.

21

Furtherwork will also include the implementation and testing of the techniques mentioned

in the previous section. In particular, attention will be paid to choosing an aggregation strategy

for general Markov chains, where no a priori knowledge of the topology is available. Several of

these techniques have already proven to provide improved efficiency in preliminary experiments.

A parallel version of the ML algorithm is also in preparation, and we hope to be able to

present results obtained on a MIMD supercomputer in the near future.

Aeknowled_;ement

The authors would like to thank J. Van Rosendale, D. Nicol, P. Heidelberger, and G. Ciardo

for helpful discussions and suggestions for improvements and G. Ciardo for permission to use

the SPNP tool.

References

[1] A. BRANDT: Multi-level adaptive solutions to boundary-value problems. Math. Comp. 31,

pp. 333-390, 1977.

[2] W. BRINGS: A Multigrid Tutorial. SIAM, Philadelphia, PA, 1987.

[3] G. CIARDO, A. BLAKEMORE, P. CHXMENTO, J. Mt1PPALA, K. TRIVEm: Automated

generation and analysis of Markov reward models using stochastic reward nets. To appear

in C. MEYER AND R. PLEMMONS (Ed.) Linear Algebra, Markov Chains, and Queueing

Models, IMA Volumes in Mathematics and its Applications, springer-Verlag, 1993.

[4] G. CIARDO, K. TRWEDI, J. MUPPALA: SPNP: stochastic Petri net package. Proc. of the

Third Int. Workshop on Petri Nets and Performance Models (PNPM89), Kyoto, Japan, pp.

142-151 dec, 1989. IEEE Computer Society Press.

[5] P. COORTOlS: Block Decomposition and Iteration in Stochastic Matrices. PhiUps Journal

of Research 39, 1984.

[6] P. COURTOlS, P. SEMAL: Computable Bounds for Conditional Steady State Probabili-

ties in Large Markov Chains ans Queueing Models. IEEE Journal on Selected Areas in

Communications, SAC-4, No. 6, 1986.

[7] W. HACKBVSCH: Multi-Grid Methods and Applications, Springer Verlag, Berlin, 1985.

[8] O. McBRYAN, P. FREDERICKSON, J. LINDEN, A. SCHULLER, K. SOLCHENBACH,

K. STIJBEN, C. THOLE, AND U. TROTTENBERG.: Multigrid methods on parallel comput-

22

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ers -- a survey of recent developments. IMPACT of Computing in Science and Engineering,

3:1-75, 1991.

M. MOLLOY: Performance analysis using stochastic Petri nets. IEEE Trans. Comp. Vol 31

No. 9, 913-917, Sept. 1982.

U. RiJDE: On the Multilevel Adaptive Iterative Method. Technical Report TUM-I9216,

Computer Science Dept.,Technische UniversitSt Miinchen, 1992.

J. RUGE, K. STUBEN: Algebraic Multigrid in S. McCormick (Ed.): Multigrid Methods,

SIAM, Philadelphia, 1987.

P. SCHWEITZER: A Survey of Aggregation-Disaggregation in Large Markov Chains. In W.

STEWART (Ed.) Numerical Solution of Markov Chains, Marcel Dekker, 1991, ISBN 0-8247-

8405-7.

P. SCHWEITZER.* Aggregation Methods for Large Markov Chains. G. Iazeolla, P. Courtois,

A. Hordijk (eds.): Mathematical Computer Performance and Reliability. Elsevier, 1984.

L. P. SEELEN: An Algorithm for Ph/Ph/c Queues, European Journal of Operations Re-

search, V 23, pp 118-127, 1986.

W. STEWART, A. GOYAL: Matrix Methods in Large Dependability Models. IBM Research

Report RC 11485 (#51598) 11/4/85.

Y. TAKAHASHI: A Lumping Method for Numerical Calculations of Stationary Distributions

of Markov Chains, Research Report No. B-18, Department of Information Sciences, Tokyo

Institute of Technology, Tokyo, Japan, June, 1975.

P. WESSELING" An introduction to multigrid methods, John Wiley & Sons Ltd., Chichester,

England, 1992.

23

25000 '

22500

20000

17500

15000

12500

10000

7500

5000

2500

0

-2500

SOR-'-- 7"
ML"|

o.E,. _'°"

o.r _"

i I I I

2000 4000 6000 8000
Number of States

I0000

n.
o

4000

3500

3000

2500

2000

1500

I000

500

0

-500
0

GS -','-'- /

=:. /

Ii/_/Iil

..... -'" "..l_--'=_,tz-j---_._ ---_---._--_--._---_--

I l i I

2000 4000 6000 8000 10000
Number of States

o
u
aj

c,

E_

0

-H
_J

_a

J

0

U

3OOO

2750

2500

2250

2000

1750

1500

1250

I000

750

5O0

250

0

-250

GS _ /
SOR"_'- /

ML '_'-"

./

Xr '°

/./

,l"

,.if t

,IF /

Figure 3:

I i I

2000 4000 6000
Number of States

Birth-Death chain.

300

250

2OO

150

10o

5O

, 0

8000 i0000

Gs-.- /

SOR-.i-.- _..

,.-" o.ll/**

o...Ir _-'/1"

I I I l

2000 4000 6000 8000 10000
Number of States

Top left :" Number of Iterations; Top right: Operation count;

Bottom left : Computation time; Bottom right : Time Ratio.

24

400

350

G
¢
0
o 300

250

",_ 200

¢,
0

150

i00

0

U

50

0

soz:=L /

./_.i °"

fJ

.,.,7 ,-.'7

d:;:21...............,..................;.................
4000 8000 12000 16000

Number of States

1400

1200

I000

{m

o 800

h

600
H

400

200

!
!

/
|

4000 8000 12000 16000

Number of States

Figure 4: Birth Death problem with fixed diameter. Left : Computation time; Right: Number

of iterations.

100000 1000

,_ 10000
c:
0
U

1000

.,"4

"_ 100

0
..,-t

0
u 1

-., -., •., . -, - "m - -

GS ...N--

SOR "_-"

/2
...... .._."

w _'°II"r_"

0

Ig

0

I00

10

• '' " '' " "' " '' " '' " "i

i
1

i

0.i 0.I

0.001 0.01 0.1 1 10 100 1000 0.001 0.01 0.1 1 10 100 1000

Ratio of (deathRate / birthrate) Ratio of (deathRate / birthrate)

Figure 5: Birth-Death chain, effect of varying rates. Left : Computation time; Right : Time

Ratio.

25

_o

o
u

Ol

c:
-,4

E-,

c,
0

.0

0
U

4500

4000

3500

3000

2500

2000

1500

I0.00

5OO

0

/
GS "-_

T-

50 i00 150 200 250

Population

18

16

14

12

I0

8

6

SOR

/ ,/y./.--"

//
/

,/

0 I I I i

0 50 100 150 200 250

Population

Figure 6: Tandem queue, variation of pop. Left : Computation times; Right : Time Ratio.

¢.
o
u

5'}

.,.-I

Ei

E-,

0

0
U

1000 .., •., 100

GS -_--

SOR -_'-

¢

I ._ r _lm..-i-i_--i--t_-..l_ l..

,.g_.oMr

1

0.001 0,01 0.I I I0 i00 000

Ratio of mul / mu2, mul set to 1.0

100

I0

GS

SOR .t-.-

10

0.001 0.01 0.1 i

• ,! . .| . ,

10 I00 i000

Ratio of mul / mu2, mul set to 1.0

Figure 7: Tandem queue problem, variation of #1/#2. Left : Computation time; Right : Time

Ratio.

26

16DO

1400

0
u 1200
|

lO00

|

E
800

K
o

600
o
d

400

0
U

2O0

0

/\

I I I | #

0.2 0.4 0.6 0.8]

p (probabilityreturn to queue11

1200

1000II

0 0.2 0.4 0.6 0,8

p (probabilityreLurnLoqueue1)

1200

I000

800

600

_R -*-

\
400 '_

200'

0
0 0,2 0.4 0,6 O.e

p (probabilityreturnto queuel)

Figure 8: Tandem queue problem, variation of p, Computation times. Left : #1 = /_2 = 1;

Centre : _1 = 1, #2 = 2; Right : #1 = 2, /_2 = 1.

I

pl _t2 I p

---- TN©

Figure 9: Tandem Queueing Network

9

Figure 10: Molloy's Problem

27

100000

10000 -

1000

100

lO

1

I I I I

/ _ soR--x--

0.1 I I I I

I0 20 30 40 50

Population

6O

I I

I I

I I

s i

@ @

Figure 11: Results for MoUoy's problem

@

@
I

I

1

I

@

/

(6b>o /'8",,

5'"b:---- o -,o;
I I I I

':._.i:._:'.... o o

/8 6k o
i,, 0 o o

"I- I/ I

I I I

0 0 0

Figure 12: Markov state space for tandem blocking queue

M
F
L
O.
P
S

16

12

8

4

0

I I I I
W_

F_
V---O_

0.0 0.2 • 0.4 0.6 0.8 1.0

OJ

Figure 13: Effect of overcorrection for ML algorithm. Birth (rate 100) / death (rate 101) chain,

length 512. GS requires 899 MFLOPs, SOR requires 8.48 MFLOPs.

28

M
F
L
O
P
s

1000

100-

10-

0.1

)

}

I I I I I I I [I

soR

I I I I I I I I I

1.0 1.I 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

_OSOR

I l I I I I I I I I I

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

O_ML

Figure 14: Effect of overrelaxation/overcorrection for SOR and ML algorithms. Birth (rate 100)

/ death (rate 101) chain, length 512.

22

20

18

15

14

12

I0

8

6

4

2

0

2

w

TAKA

I i I I I I

4 6 8 10 12 14 16

Aggregation Factor

Figure 15: Comparison With Takahashi Algorithm, Time Ratio.

29

N Form Approved

REPORT DOCUMENTATIO PAGE OMB No 0704-0188
Pub c report ng burden for this collect on of information $ estimated to average I hour per response ncludingthe time for rev ewln& instructions, searching existing data sources,
gathering and maintaining the data needed, and complet ng and reviewing the col ect on of nformatlon. Send comments regarding this burden estimate or any other aspect of this
collection of information,includlng suggestions for reducing this burden, to Washin_on Headquarters Services, Directorate for Information Operations and Reports. 12]S Jefferson
Davis Hifhway. Suite 1204, Arlin_on, VA 22202-430_, and to the Office of Management and Budl_et. Paperwork Reduction Project (0704-0188), Washing'ton, DC 20503.

3. REPORT TYPE AND DATES COVEREDContractor Report
I. AGENCY USE ONLY(Leaveblank) 2, REPORT DATE

November 1993

4. TITLE AND SUBTITLE
A MULTI-LEVEL SOLUTION ALGORITHM

FOR STEADY-STATE MARKOV CHAINS

!

6. AUTHOR(S)

Graham Horton

Scott T. Leutenegger

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Apphcations in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NA51-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 93-81

10. SPO NSORING/MO NITORING
AGENCY REPORT NUMBER

NASA CR-191558

ICASE Report No. 93-81

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Michael F. Card
Final Report
Submitted to SIGMETRICS 94

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

12b. DISTRIBUTION CODE

Subject Category 61,59

1

13. ABSTRACT (Maximum 200 words)

A new iterative algorithm, the multi-level algorithm, for the numerical solution of steady state Markov chains is

presented. The method utilizes a set of recursively coarsened representations of the original system to achieve
accelerated convergence. It is motivated by multigrid methods, which are widely used for fast solution of partial

differential equations. Initial results of numerical experiments are reported, showing significant reductions in

computation time, often an order of magnitude or more, relative to the Ganss-Seidel and optimal SOR algorithms

for a variety of test problems. The paper also contrasts and compares the multi-level method with the iterative

aggregation-disaggregation algorithm of Takahashi.

i4. SUBJECT TERMS
Markov Chains; Solution Technique; Multi-level

17. SECURITY CLASSIFICATION lB. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified

SN 7540-01-280-5500

1_ U.S. GOVERNMENT PIUNr'ING ORIFICE: 1993 - $_/1161_2

IS. NUMBER OF PAGES

31

16. PRICE CODE

A03

20. LIMITATION

OF ABSTRACT

_tandard Form 298(Rev. 2-89)
Prescribed by ANSI Std Z39-IB
298-102

